4,060 research outputs found

    Using Stock-Flow Diagrams to Visualize Theranostic Approaches to Solid Tumors in Personalized Nanomedicine

    Get PDF
    Personalized nanomedicine has rapidly evolved over the past decade to tailor the diagnosis and treatment of several diseases to the individual characteristics of each patient. In oncology, iron oxide nano-biomaterials (NBMs) have become a promising biomedical product in targeted drug delivery as well as in magnetic resonance imaging (MRI) as a contrast agent and magnetic hyperthermia. The combination of diagnosis and therapy in a single nano-enabled product (so-called theranostic agent) in the personalized nanomedicine has been investigated so far mostly in terms of local events, causes-effects, and mutual relationships. However, this approach could fail in capturing the overall complexity of a system, whereas systemic approaches can be used to study the organization of phenomena in terms of dynamic configurations, independent of the nature, type, or spatial and temporal scale of the elements of the system. In medicine, complex descriptions of diseases and their evolution are daily assessed in clinical settings, which can be thus considered as complex systems exhibiting self-organizing and non-linear features, to be investigated through the identification of dynamic feedback-driven behaviors. In this study, a Systems Thinking (ST) approach is proposed to represent the complexity of the theranostic modalities in the context of the personalized nanomedicine through the setting up of a stock-flow diagram. Specifically, the interconnections between the administration of magnetite NBMs for diagnosis and therapy of tumors are fully identified, emphasizing the role of the feedback loops. The presented approach has revealed its suitability for further application in the medical field. In particular, the obtained stock-flow diagram can be adapted for improving the future knowledge of complex systems in personalized nanomedicine as well as in other nanosafety areas

    Addressing COVID-19 Communication and Management by a Systems Thinking Approach

    Get PDF
    A systemic stock-flow diagram is proposed for the communication and management of health services and strategies concerning the COVID-19 epidemic. The possible role of government interventions in activating systemic leverage points is also addressed. The presented approach, based on Systems Thinking, can create the basis for creating an analytical simulator of the disease spread, and at the same time the diagram can constitute a powerful tool for improving the quality of information for both policy-makers and the general public in situations of epidemics

    The mosaic leafhopper Orientus ishidae: host plants, spatial distribution, infectivity, and transmission of 16SrV phytoplasmas to vines

    Get PDF
    Orientus ishidae (Matsumura) is an Asian species introduced into Europe and recently associated with 16SrV phytoplasmas, related to grapevine “flavescence dorée”. Its life cycle, host plants, spatial distribution, infection and vector capability have been investigated in vine-growing areas of Piedmont, NW Italy. The spatial distribution of adults in vineyards was studied by applying interpolation methods to trap capture data. Insects were subject to molecular analyses to verify phytoplasma presence and identity. DNA extraction and PCR were made to detect 16SrV phytoplasmas. Transmission experiments were set up, using different sources for phytoplasma acquisition, and two plant species and an artificial diet for inoculation. Whole mount in situ hybridization was made to detect phytoplasmas in the salivary glands of adults. In the vineyard agro-ecosystem, 19 plant species (11 families), mainly broadleaf trees and shrubs, were recognized as host plants of the insect. Adults were more abundant on putative host plants than on grapevines, with a clear clustering at the edges of vineyards, and without a massive intrusion into the vineyard from outside. 16SrV phytoplasmas were detected only in adults captured with yellow sticky traps (20 out of 188 tested). The transmission of 16SrV phytoplasmas was successful after phytoplasma acquisition from infected broad bean and inoculation on grapevine

    Assessing the vulnerability of buildings to tsunami in Sydney

    Get PDF
    Australia is vulnerable to the impacts of tsunamis and exposure along the SE coast of New South Wales is especially high. Significantly, this is the same area reported to have been affected by repeated large magnitude tsunamis during the Holocene. Efforts are under way to complete probabilistic risk assessments for the region but local government planners and emergency risk managers need information now about building vulnerability in order to develop appropriate risk management strategies. We use the newly revised PTVA-3 Model (Dall'Osso et al., 2009) to assess the relative vulnerability of buildings to damage from a "worst case tsunami" defined by our latest understanding of regional risk – something never before undertaken in Australia. We present selected results from an investigation of building vulnerability within the local government area of Manly – an iconic coastal area of Sydney. We show that a significant proportion of buildings (in particular, residential structures) are classified as having "High" and "Very High" Relative Vulnerability Index scores. Furthermore, other important buildings (e.g., schools, nursing homes and transport structures) are also vulnerable to damage. Our results have serious implications for immediate emergency risk management, longer-term land-use zoning and development, and building design and construction standards. Based on the work undertaken here, we recommend further detailed assessment of the vulnerability of coastal buildings in at risk areas, development of appropriate risk management strategies and a detailed program of community engagement to increase overall resilience

    Applying and validating the PTVA-3 Model at the Aeolian Islands, Italy: assessment of the vulnerability of buildings to tsunamis

    Get PDF
    The volcanic archipelago of the Aeolian Islands (Sicily, Italy) is included on the UNESCO World Heritage list and is visited by more than 200 000 tourists per year. Due to its geological characteristics, the risk related to volcanic and seismic activity is particularly high. Since 1916 the archipelago has been hit by eight local tsunamis. The most recent and intense of these events happened on 30 December 2002. It was triggered by two successive landslides along the north-western side of the Stromboli volcano (Sciara del Fuoco), which poured approximately 2–3×10<sup>7</sup> m<sup>3</sup> of rocks and debris into the Tyrrhenian Sea. The waves impacted across the whole archipelago, but most of the damage to buildings and infrastructures occurred on the islands of Stromboli (maximum run-up 11 m) and Panarea. <br><br> The aim of this study is to assess the vulnerability of buildings to damage from tsunamis located within the same area inundated by the 2002 event. The assessment is carried out by using the PTVA-3 Model (Papathoma Tsunami Vulnerability Assessment, version 3). The PTVA-3 Model calculates a Relative Vulnerability Index (RVI) for every building, based on a set of selected physical and structural attributes. Run-up values within the area inundated by the 2002 tsunami were measured and mapped by the Istituto Italiano di Geofisica e Vulcanologia (INGV) and the University of Bologna during field surveys in January 2003. Results of the assessment show that if the same tsunami were to occur today, 54 buildings would be affected in Stromboli, and 5 in Panarea. The overall vulnerability level obtained in this analysis for Stromboli and Panarea are "average"/"low" and "very low", respectively. Nonetheless, 14 buildings in Stromboli are classified as having a "high" or "average" vulnerability. For some buildings, we were able to validate the RVI scores calculated by the PTVA-3 Model through a qualitative comparison with photographs taken by INGV and the University of Bologna during the post-tsunami survey. With the exception of a single structure, which is partially covered by a coastal dune on the seaward side, we found a good degree of accuracy between the PTVA-3 Model forecast assessments and the actual degree of damage experienced by buildings. This validation of the model increases our confidence in its predictive capability. Given the high tsunami risk for the archipelago, our results provide a framework for prioritising investments in prevention measures and addressing the most relevant vulnerability issues of the built environment, particularly on the island of Stromboli

    Surfactant-like Effect and Dissolution of Ultrathin Fe Films on Ag(001)

    Full text link
    The phase immiscibility and the excellent matching between Ag(001) and Fe(001) unit cells (mismatch 0.8 %) make Fe/Ag growth attractive in the field of low dimensionality magnetic systems. Intermixing could be drastically limited at deposition temperatures as low as 140-150 K. The film structural evolution induced by post-growth annealing presents many interesting aspects involving activated atomic exchange processes and affecting magnetic properties. Previous experiments, of He and low energy ion scattering on films deposited at 150 K, indicated the formation of a segregated Ag layer upon annealing at 550 K. Higher temperatures led to the embedding of Fe into the Ag matrix. In those experiments, information on sub-surface layers was attained by techniques mainly sensitive to the topmost layer. Here, systematic PED measurements, providing chemical selectivity and structural information for a depth of several layers, have been accompanied with a few XRD rod scans, yielding a better sensitivity to the buried interface and to the film long range order. The results of this paper allow a comparison with recent models enlightening the dissolution paths of an ultra thin metal film into a different metal, when both subsurface migration of the deposit and phase separation between substrate and deposit are favoured. The occurrence of a surfactant-like stage, in which a single layer of Ag covers the Fe film is demonstrated for films of 4-6 ML heated at 500-550 K. Evidence of a stage characterized by the formation of two Ag capping layers is also reported. As the annealing temperature was increased beyond 700 K, the surface layers closely resembled the structure of bare Ag(001) with the residual presence of subsurface Fe aggregates.Comment: 4 pages, 3 figure
    • …
    corecore